In this article we’ll explain the differences between a Closed-Circuit and an Open-Circuit Cooling Tower and the advantages and disadvantage of each. How do you know which type to use for a project? They both provide heat rejection but in slightly different ways. These systems are often referred to as open and closed loop systems. These are the two commonly used HVAC cooling tower system designs.
If you prefer to watch the video of this presentation than scroll to the bottom.
Closed Circuit Cooling Tower versus Open Circuit Cooling Tower Comparison DiagramIn a closed-circuit cooling tower, the process fluid, which could be water, or a water-glycol mixture is circulated within a closed loop piping system. There are two separate water sources, one external within a closed loop, and the second one that circulates water from the tower basin over the heat exchanger. There is never any contact between the water in the enclosed loop and the water circulated within the tower.
The water in the tower basin is pumped up and sprayed over the coil that is fed from the closed-loop piping while a fan forces air over the wet coil. This increases heat transfer through the coil while minimizing the evaporation of water from the basin. The cooled water in the closed-loop coil returns to the building to absorb more heat.
Vertical Water Source Heat Pump in a Closed Circuit Cooling Tower SystemReturn air brings heat from the space over the indoor coil. The refrigerant cycle moves that heat to the water-cooled condenser coil, where the water circulated from the cooling tower picks up that heat. The heat is pumped to the cooling towers closed-loop heat exchanger coil where water is sprayed over it as air is induced or forced over the coil.
Closed-Circuit Cooling Tower serving Vertical Water Source Heat Pumps in a HotelIn an open circuit cooling tower, the water is directly exposed to the outside air. Water enters the top of the tower and is sprayed over the fill or heat transfer media. The exchange of heat occurs directly between the water and the entering ambient air. The water that is circulated to the chiller’s condenser and the air within the tower touch each other. This increases the chance of contaminants being scrubbed out of the air and into the cooling tower basin.
Open Circuit cooling Tower Flow DiagramThe water in the basin is then returned to the facility or the condenser side of a water-cooled chiller, which could foul the chillers condenser coil if the water is not properly treated. The makeup water to the tower can also introduce contaminants to the process water.
There are several tower configurations including induced draft and forced draft. The fans for an Induced draft tower are located at the top of the tower and induces air into the tower. The fans for a forced-draft tower are located at the bottom of the tower and forces air into the tower and over the coil.
Forced Draft vs Induced Draft Fluid Coolers (Closed Circuit Towers)closed circuit cooling towers also known as Evaporative Fluid Coolers play a crucial role in the operation of water source heat pump systems in the HVAC industry. It’s important to use a closed loop system because the water is circulated into the coils of all the water-source heat pumps scattered throughout the building. Sending water from an open tower into all these remote coils could create a maintenance nightmare along with a reduction in efficiency for these units.
Fluid Cooler with Horizontal Water-Cooled Heat PumpsClosed circuit cooling towers are often preferred in applications where water quality is critical, and there’s a need to minimize the risk of contamination. This makes them suitable for water-cooled heat pump applications and those industries with strict quality standards, such as laboratories or data centers.
Large range of capacities and configurations.
Open circuit cooling towers are commonly used in the HVAC industry where water quality is less critical, and the focus is on cost-effective cooling. They are found in all types of buildings spanning the HVAC industry. The addition of a heat exchanger between the cooling tower and the chiller can add a layer of protection against the fouling of the chiller’s condenser tubes, but at an added cost. This doesn’t eliminate the need for water treatment of the tower, it just shifts the tower basin water from contacting the chillers coil to the heat exchanger.
Open versus Closed Circuit Cooling Towers